Title: | Quick Wraps 2 |
---|---|
Description: | A collection of (wrapper) functions the creator found useful for quickly placing data summaries and formatted regression results into '.Rnw' or '.Rmd' files. Functions for generating commonly used graphics, such as receiver operating curves or Bland-Altman plots, are also provided by 'qwraps2'. 'qwraps2' is a updated version of a package 'qwraps'. The original version 'qwraps' was never submitted to CRAN but can be found at <https://github.com/dewittpe/qwraps/>. The implementation and limited scope of the functions within 'qwraps2' <https://github.com/dewittpe/qwraps2/> is fundamentally different from 'qwraps'. |
Authors: | Peter DeWitt [aut, cre] , Tell Bennett [ctb] |
Maintainer: | Peter DeWitt <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.6.1 |
Built: | 2025-01-13 03:49:27 UTC |
Source: | https://github.com/dewittpe/qwraps2 |
A set of helpful operators to make writing and basic data analysis easier.
e1 %s% e2
e1 %s% e2
e1 |
a character string |
e2 |
a character string |
# base R paste0("A longer string ", "can be ", "built") # with the %s% operator "A longer string " %s% "can be " %s% "built"
# base R paste0("A longer string ", "can be ", "built") # with the %s% operator "A longer string " %s% "can be " %s% "built"
Encapsulate a string in backticks. Very helpful for in line code in
spin
scripts.
backtick(x, dequote = FALSE)
backtick(x, dequote = FALSE)
x |
the thing to be deparsed and encapsulated in backticks |
dequote |
remove the first and last double or signal quote form |
backtick("a quoted string") backtick(no-quote) backtick(noquote)
backtick("a quoted string") backtick(no-quote) backtick(noquote)
A more robust check for open/close matching sets of comments in a spin file.
check_comments(c1, c2)
check_comments(c1, c2)
c1 |
index (line numbers) for the start delimiter of comments |
c2 |
index (line numbers) for the end delimiter of comments |
Construction of confusion matrices, accuracy, sensitivity, specificity, confidence intervals (Wilson's method and (optional bootstrapping)).
confusion_matrix( ..., thresholds = NULL, confint_method = "logit", alpha = getOption("qwraps2_alpha", 0.05) ) ## Default S3 method: confusion_matrix( truth, predicted, ..., thresholds = NULL, confint_method = "logit", alpha = getOption("qwraps2_alpha", 0.05) ) ## S3 method for class 'formula' confusion_matrix( formula, data = parent.frame(), ..., thresholds = NULL, confint_method = "logit", alpha = getOption("qwraps2_alpha", 0.05) ) ## S3 method for class 'glm' confusion_matrix( x, ..., thresholds = NULL, confint_method = "logit", alpha = getOption("qwraps2_alpha", 0.05) ) ## S3 method for class 'qwraps2_confusion_matrix' print(x, ...)
confusion_matrix( ..., thresholds = NULL, confint_method = "logit", alpha = getOption("qwraps2_alpha", 0.05) ) ## Default S3 method: confusion_matrix( truth, predicted, ..., thresholds = NULL, confint_method = "logit", alpha = getOption("qwraps2_alpha", 0.05) ) ## S3 method for class 'formula' confusion_matrix( formula, data = parent.frame(), ..., thresholds = NULL, confint_method = "logit", alpha = getOption("qwraps2_alpha", 0.05) ) ## S3 method for class 'glm' confusion_matrix( x, ..., thresholds = NULL, confint_method = "logit", alpha = getOption("qwraps2_alpha", 0.05) ) ## S3 method for class 'qwraps2_confusion_matrix' print(x, ...)
... |
pass through |
thresholds |
a numeric vector of thresholds to be used to define the
confusion matrix (one threshold) or matrices (two or more thresholds). If
|
confint_method |
character string denoting if the logit (default), binomial, or Wilson Score method for deriving confidence intervals |
alpha |
alpha level for 100 * (1 - alpha)% confidence intervals |
truth |
a integer vector with the values |
predicted |
a numeric vector. See Details. |
formula |
column (known) ~ row (test) for building the confusion matrix |
data |
environment containing the variables listed in the formula |
x |
a |
The confusion matrix:
True | Condition | ||
+ | - | ||
Predicted Condition | + | TP | FP |
Predicted Condition | - | FN | TN |
where
FN: False Negative = truth = 1 & prediction < threshold,
FP: False Positive = truth = 0 & prediction >= threshold,
TN: True Negative = truth = 0 & prediction < threshold, and
TP: True Positive = truth = 1 & prediction >= threshold.
The statistics returned in the cm_stats
element are:
accuracy = (TP + TN) / (TP + TN + FP + FN)
sensitivity, aka true positive rate or recall = TP / (TP + FN)
specificity, aka true negative rate = TN / (TN + FP)
positive predictive value (PPV), aka precision = TP / (TP + FP)
negative predictive value (NPV) = TN / (TN + FN)
false negative rate (FNR) = 1 - Sensitivity
false positive rate (FPR) = 1 - Specificity
false discovery rate (FDR) = 1 - PPV
false omission rate (FOR) = 1 - NPV
F1 score
Matthews Correlation Coefficient (MCC) = ((TP * TN) - (FP * FN)) / sqrt((TP + FP) (TP+FN) (TN+FP) (TN+FN))
Synonyms for the statistics:
Sensitivity: true positive rate (TPR), recall, hit rate
Specificity: true negative rate (TNR), selectivity
PPV: precision
FNR: miss rate
Sensitivity and PPV could, in some cases, be indeterminate due to division by zero. To address this we will use the following rule based on the DICE group https://github.com/dice-group/gerbil/wiki/Precision,-Recall-and-F1-measure: If TP, FP, and FN are all 0, then PPV, sensitivity, and F1 will be defined to be 1. If TP are 0 and FP + FN > 0, then PPV, sensitivity, and F1 are all defined to be 0.
confusion_matrix
returns a list with elements
cm_stats
a data.frame with columns:
auroc
numeric value for the area under the receiver operating
curve
auroc_ci
a numeric vector of length two with the lower and
upper bounds for a 100(1-alpha)% confidence interval about the auroc
auprc
numeric value for the area under the precision recall
curve
auprc_ci
a numeric vector of length two with the lower and
upper limits for a 100(1-alpha)% confidence interval about the auprc
confint_method
a character string reporting the method used to
build the auroc_ci
and auprc_ci
alpha
the alpha level of the confidence intervals
prevalence
the proportion of the input of positive cases, that
is (TP + FN) / (TP + FN + FP + TN) = P / (P + N)
# Example 1: known truth and prediction status df <- data.frame( truth = c(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) , pred = c(1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0) ) confusion_matrix(df$truth, df$pred, thresholds = 1) # Example 2: Use with a logistic regression model mod <- glm( formula = spam ~ word_freq_our + word_freq_over + capital_run_length_total , data = spambase , family = binomial() ) confusion_matrix(mod) confusion_matrix(mod, thresholds = 0.5)
# Example 1: known truth and prediction status df <- data.frame( truth = c(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) , pred = c(1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0) ) confusion_matrix(df$truth, df$pred, thresholds = 1) # Example 2: Use with a logistic regression model mod <- glm( formula = spam ~ word_freq_our + word_freq_over + capital_run_length_total , data = spambase , family = binomial() ) confusion_matrix(mod) confusion_matrix(mod, thresholds = 0.5)
Archive of deprecated functions. Some of these might be removed from the package in later releases.
Deprecated methods for building the data sets needed for plotting roc and prc
plots. use confusion_matrix
instead.
qroc_build_data_frame(fit, truth = NULL, n_threshold = 200, ...) ## Default S3 method: qroc_build_data_frame(fit, truth = NULL, n_threshold = 200, ...) ## S3 method for class 'glm' qroc_build_data_frame(fit, truth = NULL, n_threshold = 200, ...) qprc_build_data_frame(fit, n_threshold = 200, ...)
qroc_build_data_frame(fit, truth = NULL, n_threshold = 200, ...) ## Default S3 method: qroc_build_data_frame(fit, truth = NULL, n_threshold = 200, ...) ## S3 method for class 'glm' qroc_build_data_frame(fit, truth = NULL, n_threshold = 200, ...) qprc_build_data_frame(fit, n_threshold = 200, ...)
fit |
a |
truth |
ignored if |
n_threshold |
number of thresholds to use to estimate auroc or auprc |
... |
passed to |
A collection of functions for extracting summary statistics and
reporting regression results from lm
, glm
and other regression
objects.
extract_fstat(x) extract_fpvalue(x) ## S3 method for class 'lm' extract_fpvalue(x)
extract_fstat(x) extract_fpvalue(x) ## S3 method for class 'lm' extract_fpvalue(x)
x |
a |
a character vector of the formatted numbers
formatted p-value from the F-test
fit <- lm(mpg ~ wt + hp + drat, data = mtcars) summary(fit) extract_fstat(fit) extract_fpvalue(fit)
fit <- lm(mpg ~ wt + hp + drat, data = mtcars) summary(fit) extract_fstat(fit) extract_fpvalue(fit)
This check is three-fold: 1) verify the current working directory is as expected, 2) verify the user can access the file, and 3) verify the file contents are as expected (via md5sum).
file_check( paths, md5sums = NULL, absolute_paths = c("warn", "stop", "silent"), stop = FALSE )
file_check( paths, md5sums = NULL, absolute_paths = c("warn", "stop", "silent"), stop = FALSE )
paths |
a character path to the target file |
md5sums |
a character string for the expected md5sum of the target file.
If |
absolute_paths |
a character string to set the behavior of warning (default), stopping, or silent if/when absolute file paths are used. |
stop |
if |
The test for the file access is done to verify the file can be read by the current user.
The return of the function is TRUE
if all the files in paths
are accessible, are case matched (optional), and all of requested md5sum
checks pass. Windows and macOS are generally case-insensitive systems, but
many Linux systems are case-sensitive. As such
file.exists
and file.access
may
return different values depending the OS that is active. file_check
looks for a case match as part of its checks to hopefully prevent issues
across operating systems.
By default, if the return is TRUE
then only TRUE
will
be printed to the console. If the return is FALSE
then the
attr(, "checks")
is printed by default as well.
Good practice would be to use relative paths, a warning will be given if any
of the paths
are determined to be absolute paths. That said, there
are cases when an absolute path is needed, e.g., a common data file on a
server with multiple users accessing the file(s). Set absolute_paths =
c("silent")
to silence the warnings.
The function will return a single TRUE/FALSE value with attributes
attr(, "checks")
.
# create example files relative_example_file1 <- basename( tempfile( pattern = "QWRAPS2_EXAMPLE_1" , fileext = ".txt" , tmpdir = getwd() ) ) relative_example_file2 <- basename( tempfile( pattern = "QWRAPS2_EXAMPLE_2" , fileext = ".txt" , tmpdir = getwd() ) ) absolute_example_file <- tempfile() cat("example file.", file = relative_example_file1) cat("Another example file.", file = relative_example_file2) cat("Another example file.", file = absolute_example_file) # Check that you have access to the files in the working directory. test1 <- file_check(c(relative_example_file1, relative_example_file2)) test1 # By default, when the checks return TRUE the details of the checks are not # printed. You can view the details of the checks as follows: attr(test1, "checks") # access to absolute_example_file will generate a warning about # absolute_paths by default test2 <- file_check(absolute_example_file) test2 <- file_check(absolute_example_file, absolute_paths = "silent") test2 # Case Match test_case_match <- file_check( c(relative_example_file1, tolower(relative_example_file1)) ) test_case_match # If one or more files is not accessable then return is FALSE and the meta data # is printed by default. test_non_existent_file <- file_check( c("UNLIKELYFILENAME", relative_example_file1, relative_example_file2) ) test_non_existent_file # Or have an error thrown: ## Not run: file_check( c("UNLIKELYFILENAME", relative_example_file1, relative_example_file2) , stop = TRUE ) ## End(Not run) # Verify the md5sums as well as file access: md5_check1 <- file_check(relative_example_file1, "7a3409e17f9de067740e64448a86e708") md5_check1 # If you only need to verify a subset of md5sums then use an NA in the md5sums # argument: md5_check2 <- file_check(c(relative_example_file1, relative_example_file2), c("7a3409e17f9de067740e64448a86e708", NA)) md5_check2 # Verify all the md5sums md5_check3 <- file_check(c(relative_example_file1, relative_example_file2), c("7a3409e17f9de067740e64448a86e708", "798e52b92e0ae0e60f3f3db1273235d0")) md5_check3 # clean up working directory unlink(relative_example_file1) unlink(relative_example_file2) unlink(absolute_example_file)
# create example files relative_example_file1 <- basename( tempfile( pattern = "QWRAPS2_EXAMPLE_1" , fileext = ".txt" , tmpdir = getwd() ) ) relative_example_file2 <- basename( tempfile( pattern = "QWRAPS2_EXAMPLE_2" , fileext = ".txt" , tmpdir = getwd() ) ) absolute_example_file <- tempfile() cat("example file.", file = relative_example_file1) cat("Another example file.", file = relative_example_file2) cat("Another example file.", file = absolute_example_file) # Check that you have access to the files in the working directory. test1 <- file_check(c(relative_example_file1, relative_example_file2)) test1 # By default, when the checks return TRUE the details of the checks are not # printed. You can view the details of the checks as follows: attr(test1, "checks") # access to absolute_example_file will generate a warning about # absolute_paths by default test2 <- file_check(absolute_example_file) test2 <- file_check(absolute_example_file, absolute_paths = "silent") test2 # Case Match test_case_match <- file_check( c(relative_example_file1, tolower(relative_example_file1)) ) test_case_match # If one or more files is not accessable then return is FALSE and the meta data # is printed by default. test_non_existent_file <- file_check( c("UNLIKELYFILENAME", relative_example_file1, relative_example_file2) ) test_non_existent_file # Or have an error thrown: ## Not run: file_check( c("UNLIKELYFILENAME", relative_example_file1, relative_example_file2) , stop = TRUE ) ## End(Not run) # Verify the md5sums as well as file access: md5_check1 <- file_check(relative_example_file1, "7a3409e17f9de067740e64448a86e708") md5_check1 # If you only need to verify a subset of md5sums then use an NA in the md5sums # argument: md5_check2 <- file_check(c(relative_example_file1, relative_example_file2), c("7a3409e17f9de067740e64448a86e708", NA)) md5_check2 # Verify all the md5sums md5_check3 <- file_check(c(relative_example_file1, relative_example_file2), c("7a3409e17f9de067740e64448a86e708", "798e52b92e0ae0e60f3f3db1273235d0")) md5_check3 # clean up working directory unlink(relative_example_file1) unlink(relative_example_file2) unlink(absolute_example_file)
Functions for formatting numeric values for consistent display in reports.
frmt(x, digits = getOption("qwraps2_frmt_digits", 2), append = NULL) frmtp( x, style = getOption("qwraps2_journal", "default"), digits = getOption("qwraps2_frmtp_digits", 4), markup = getOption("qwraps2_markup", "latex"), case = getOption("qwraps2_frmtp_case", "upper"), leading0 = getOption("qwraps2_frmtp_leading0", TRUE) ) frmtci( x, est = 1, lcl = 2, ucl = 3, format = "est (lcl, ucl)", show_level = FALSE, ... )
frmt(x, digits = getOption("qwraps2_frmt_digits", 2), append = NULL) frmtp( x, style = getOption("qwraps2_journal", "default"), digits = getOption("qwraps2_frmtp_digits", 4), markup = getOption("qwraps2_markup", "latex"), case = getOption("qwraps2_frmtp_case", "upper"), leading0 = getOption("qwraps2_frmtp_leading0", TRUE) ) frmtci( x, est = 1, lcl = 2, ucl = 3, format = "est (lcl, ucl)", show_level = FALSE, ... )
x |
a vector of numbers or a numeric matrix to format. |
digits |
number of digits, including trailing zeros, to the right of the
decimal point. This option is ignored if |
append |
a character string to append to the formatted number. This is
particularly useful for percentages or adding punctuation to the end of the
formatted number. This should be a vector of length 1, or equal to the
length of |
style |
a character string indicating a specific journal requirements for p-value formatting. |
markup |
a character string indicating if the output should be latex or markup. |
case |
a character string indicating if the output should be upper case or lower case. |
leading0 |
boolean, whether or not the p-value should be reported as 0.0123 (TRUE, default), or .0123 (FALSE). |
est |
the numeric index of the vector element or the matrix column containing the point estimate. |
lcl |
the numeric index of the vector element or the matrix column containing the lower confidence limit. |
ucl |
the numeric index of the vector element or the matrix column containing the upper confidence limit. |
format |
a string with "est" "lcl", and "ucl" to denote the location of the estimate, lower confidence limit, and upper confidence limit for the formatted string. Defaults to "est (lcl, ucl)". |
show_level |
defaults to FALSE. If TRUE and |
... |
args passed to frmt |
'frmt' was originally really just a wrapper for the formatC
. It has
extended functionality now as I have found common uses cases.
'frmtp' formats P-values per journal requirements. As I work on papers aimed at different journals, the formatting functions will be extended to match.
Default settings are controlled through the function arguments but should be
set via options()
.
Default settings report the P-value exactly if P >
getOptions("qwraps2_frmtp_digits", 4)
and reports
P < 10^-(getOptions("qwraps2_frmtp_digits", 2))
otherwise. By the
leading zero is controlled via
getOptions("qwraps2_frmtp_leading0", TRUE)
and a upper or lower case P is controlled by
getOptions("qwraps2_frmtp_case", "upper")
. These options are ignored
if style != "default"
.
Journals with predefined P-value formatting are noted in the qwraps2 documentation.
'frmtci' takes a matrix
, or data.frame
, with a point estimate
and the lcl and ucl and formats a string for reporting. est (lcl, ucl) is
the default. The confidence level can be added to the string, e.g., "est
(95
format.
'frmtcip' expects four values, est, lcl, ucl, and p-value. The resulting sting will be of the form "est (lcl, ucl; p-value)".
The 'Rpkg', 'CRANpkg', and 'Githubpkg' functions are used to help make documenting packages stylistically consistent and with valid urls. These functions were inspired by similar ones found in the BioConductor BiocStyle package.
a character vector of the formatted numbers
### Formatting numbers integers <- c(1234L, 9861230L) numbers <- c(1234, 9861230) frmt(integers) # no decimal point frmt(numbers) # decimal point and zeros to the right numbers <- c(0.1234, 0.1, 1234.4321, 0.365, 0.375) frmt(numbers) # reporting a percentage frmt(17/19 * 100, digits = 2, append = "%") # good for markdown frmt(17/19 * 100, digits = 2, append = "\\%") # good for LaTeX # append one character frmt(c(1, 2, 3)/19 * 100, digits = 2, append = "%") # append different characters frmt(c(1, 2, 3)/19 * 100, digits = 2, append = c("%;", "%!", "%.")) ### Formatting p-values ps <- c(0.2, 0.001, 0.00092, 0.047, 0.034781, 0.0000872, 0.787, 0.05, 0.043) # LaTeX is the default markup language cbind("raw" = ps, "default" = frmtp(ps), "3lower" = frmtp(ps, digits = 3, case = "lower"), "PediDent" = frmtp(ps, style = "pediatric_dentistry")) ### Using markdown cbind("raw" = ps, "default" = frmtp(ps, markup = "markdown"), "3lower" = frmtp(ps, digits = 3, case = "lower", markup = "markdown"), "PediDent" = frmtp(ps, style = "pediatric_dentistry", markup = "markdown")) # Formatting the point estimate and confidence interval # for a set of three values temp <- c(a = 1.23, b = .32, CC = 1.78) frmtci(temp) # show level uses getOption("qwraps2_alpha", 0.05) frmtci(temp, show_level = TRUE) # note that the show_level will be ignored in the following frmtci(temp, format = "est ***lcl, ucl***", show_level = TRUE) # show_level as a character frmtci(temp, show_level = "confidence between: ") # For a matrix: the numbers in this example don't mean anything, but the # formatting should. temp2 <- matrix(rnorm(12), nrow = 4, dimnames = list(c("A", "B", "C", "D"), c("EST", "LOW", "HIGH"))) temp2 frmtci(temp2) # similar for a data.frame df2 <- as.data.frame(temp2) frmtci(df2)
### Formatting numbers integers <- c(1234L, 9861230L) numbers <- c(1234, 9861230) frmt(integers) # no decimal point frmt(numbers) # decimal point and zeros to the right numbers <- c(0.1234, 0.1, 1234.4321, 0.365, 0.375) frmt(numbers) # reporting a percentage frmt(17/19 * 100, digits = 2, append = "%") # good for markdown frmt(17/19 * 100, digits = 2, append = "\\%") # good for LaTeX # append one character frmt(c(1, 2, 3)/19 * 100, digits = 2, append = "%") # append different characters frmt(c(1, 2, 3)/19 * 100, digits = 2, append = c("%;", "%!", "%.")) ### Formatting p-values ps <- c(0.2, 0.001, 0.00092, 0.047, 0.034781, 0.0000872, 0.787, 0.05, 0.043) # LaTeX is the default markup language cbind("raw" = ps, "default" = frmtp(ps), "3lower" = frmtp(ps, digits = 3, case = "lower"), "PediDent" = frmtp(ps, style = "pediatric_dentistry")) ### Using markdown cbind("raw" = ps, "default" = frmtp(ps, markup = "markdown"), "3lower" = frmtp(ps, digits = 3, case = "lower", markup = "markdown"), "PediDent" = frmtp(ps, style = "pediatric_dentistry", markup = "markdown")) # Formatting the point estimate and confidence interval # for a set of three values temp <- c(a = 1.23, b = .32, CC = 1.78) frmtci(temp) # show level uses getOption("qwraps2_alpha", 0.05) frmtci(temp, show_level = TRUE) # note that the show_level will be ignored in the following frmtci(temp, format = "est ***lcl, ucl***", show_level = TRUE) # show_level as a character frmtci(temp, show_level = "confidence between: ") # For a matrix: the numbers in this example don't mean anything, but the # formatting should. temp2 <- matrix(rnorm(12), nrow = 4, dimnames = list(c("A", "B", "C", "D"), c("EST", "LOW", "HIGH"))) temp2 frmtci(temp2) # similar for a data.frame df2 <- as.data.frame(temp2) frmtci(df2)
A few handy tools for working with ggplot2.
ggplot2_extract_legend(x, ...)
ggplot2_extract_legend(x, ...)
x |
a ggplot object |
... |
not currently used |
The ggplot2_extract_legend
function returns a list with the first
element being the legend and the second the original plot with the legend
omitted.
a list with each elements
the x
# a simple plot my_plot <- ggplot2::ggplot(mtcars) + ggplot2::aes(x = wt, y = mpg, color = wt, shape = factor(cyl)) + ggplot2::geom_point() my_plot # extract the legend. the return object is a list with two elements, the first # element is the legend, the second is the original plot sans legend. temp <- ggplot2_extract_legend(my_plot) # view just the legend. This can be done via a call to the object or using # plot or print. temp plot(temp[[1]]) # the original plot without the legened plot(temp[[2]])
# a simple plot my_plot <- ggplot2::ggplot(mtcars) + ggplot2::aes(x = wt, y = mpg, color = wt, shape = factor(cyl)) + ggplot2::geom_point() my_plot # extract the legend. the return object is a list with two elements, the first # element is the legend, the second is the original plot sans legend. temp <- ggplot2_extract_legend(my_plot) # view just the legend. This can be done via a call to the object or using # plot or print. temp plot(temp[[1]]) # the original plot without the legened plot(temp[[2]])
Return the geometric mean, variance, and standard deviation,
gmean(x, na_rm = FALSE) gvar(x, na_rm = FALSE) gsd(x, na_rm = FALSE)
gmean(x, na_rm = FALSE) gvar(x, na_rm = FALSE) gsd(x, na_rm = FALSE)
x |
a numeric vector |
na_rm |
a logical value indicating whether |
a numeric value
gmean_sd
for easy formatting of the geometric mean and
standard deviation. vignette("summary-statistics", package =
"qwraps2")
.
gmean(mtcars$mpg) identical(gmean(mtcars$mpg), exp(mean(log(mtcars$mpg)))) gvar(mtcars$mpg) identical(gvar(mtcars$mpg), exp(var(log(mtcars$mpg)) * (nrow(mtcars) - 1) / nrow(mtcars))) gsd(mtcars$mpg) identical(gsd(mtcars$mpg), exp(sqrt( var(log(mtcars$mpg)) * (nrow(mtcars) - 1) / nrow(mtcars)))) ############################################################################# set.seed(42) x <- runif(14, min = 4, max = 70) # geometric mean - four equivalent ways to get the same result prod(x) ^ (1 / length(x)) exp(mean(log(x))) 1.2 ^ mean(log(x, base = 1.2)) gmean(x) # geometric variance gvar(x) # geometric sd exp(sd(log(x))) ## This is wrong (incorrect sample size) exp(sqrt((length(x) - 1) / length(x)) * sd(log(x))) ## Correct calculation gsd(x) # Missing data will result in and NA being returned x[c(2, 4, 7)] <- NA gmean(x) gmean(x, na_rm = TRUE) gvar(x, na_rm = TRUE) gsd(x, na_rm = TRUE)
gmean(mtcars$mpg) identical(gmean(mtcars$mpg), exp(mean(log(mtcars$mpg)))) gvar(mtcars$mpg) identical(gvar(mtcars$mpg), exp(var(log(mtcars$mpg)) * (nrow(mtcars) - 1) / nrow(mtcars))) gsd(mtcars$mpg) identical(gsd(mtcars$mpg), exp(sqrt( var(log(mtcars$mpg)) * (nrow(mtcars) - 1) / nrow(mtcars)))) ############################################################################# set.seed(42) x <- runif(14, min = 4, max = 70) # geometric mean - four equivalent ways to get the same result prod(x) ^ (1 / length(x)) exp(mean(log(x))) 1.2 ^ mean(log(x, base = 1.2)) gmean(x) # geometric variance gvar(x) # geometric sd exp(sd(log(x))) ## This is wrong (incorrect sample size) exp(sqrt((length(x) - 1) / length(x)) * sd(log(x))) ## Correct calculation gsd(x) # Missing data will result in and NA being returned x[c(2, 4, 7)] <- NA gmean(x) gmean(x, na_rm = TRUE) gvar(x, na_rm = TRUE) gsd(x, na_rm = TRUE)
A function for calculating and formatting geometric means and standard deviations.
gmean_sd( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_n = "ifNA", denote_sd = "pm", markup = getOption("qwraps2_markup", "latex"), ... )
gmean_sd( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_n = "ifNA", denote_sd = "pm", markup = getOption("qwraps2_markup", "latex"), ... )
x |
a numeric vector |
digits |
digits to the right of the decimal point to return in the percentage estimate. |
na_rm |
if true, omit NA values |
show_n |
defaults to “ifNA”. Other options are “always” or “never”. |
denote_sd |
a character string set to either "pm" or "paren" for reporting 'mean
|
markup |
character string with value “latex” or “markdown” |
... |
pass through |
Given a numeric vector, gmean_sd
will return a character string with
the geometric mean and standard deviation. Formatting of the output will be
extended in future versions.
a character vector of the formatted values
gmean_sd(mtcars$mpg, markup = "latex") gmean_sd(mtcars$mpg, markup = "markdown")
gmean_sd(mtcars$mpg, markup = "latex") gmean_sd(mtcars$mpg, markup = "markdown")
Lazyload Cached label(s) or a whole directory.
lazyload_cache_dir( path = "./cache", envir = parent.frame(), ask = FALSE, verbose = TRUE, ... ) lazyload_cache_labels( labels, path = "./cache/", envir = parent.frame(), verbose = TRUE, filter, ... )
lazyload_cache_dir( path = "./cache", envir = parent.frame(), ask = FALSE, verbose = TRUE, ... ) lazyload_cache_labels( labels, path = "./cache/", envir = parent.frame(), verbose = TRUE, filter, ... )
path |
the path to the cache directory. |
envir |
the environment to load the objects into |
ask |
if TRUE ask the user to confirm loading each database found in
|
verbose |
if TRUE display the chunk labels being loaded |
... |
additional arguments passed to |
labels |
a character vector of the chunk labels to load. |
filter |
an optional function passed to |
These functions helpful for loading cached chunks into an interactive R
session. Consider the following scenario: you use knitr and have cached
chunks for lazyloading. You've created the document, close up your IDE and
move on to the next project. Later, you revisit the initial project and need
to retrieve the objects created in the cached chunks. One option is to
reevaluate all the code, but this could be time consuming. The other option
is to use lazyload_cache_labels
or lazyload_cache_dir
to
quickly (lazy)load the chunks into an active R session.
Use lazyload_cache_dir
to load a whole directory of cached objects.
Use lazyload_cache_labels
to load and explicit set of cached chunks.
# this example is based on \url{https://stackoverflow.com/a/41439691/1104685} # create a temp directory for a and place a .Rmd file within tmpdir <- normalizePath(paste0(tempdir(), "/llcache_eg"), mustWork = FALSE) tmprmd <- tempfile(pattern = "report", tmpdir = tmpdir, fileext = "Rmd") dir.create(tmpdir) oldwd <- getwd() setwd(tmpdir) # build and example .Rmd file # note that the variable x is created in the first chunck and then over # written in the second chunk cat("---", "title: \"A Report\"", "output: html_document", "---", "", "```{r first-chunk, cache = TRUE}", "mpg_by_wt_hp <- lm(mpg ~ wt + hp, data = mtcars)", "x_is_pi <- pi", "x <- pi", "```", "", "```{r second-chunk, cache = TRUE}", "mpg_by_wt_hp_am <- lm(mpg ~ wt + hp + am, data = mtcars)", "x_is_e <- exp(1)", "x <- exp(1)", "```", sep = "\n", file = tmprmd) # knit the file. evaluate the chuncks in a new environment so we can compare # the objects after loading the cache. kenv <- new.env() knitr::knit(input = tmprmd, envir = kenv) # The objects defined in the .Rmd file are now in kenv ls(envir = kenv) # view the cache list.files(path = tmpdir, recursive = TRUE) # create three more environment, and load only the first chunk into the # first, and the second chunck into the second, and then load all of the # cache into the third env1 <- new.env() env2 <- new.env() env3 <- new.env() lazyload_cache_labels(labels = "first-chunk", path = paste0(tmpdir, "/cache"), envir = env1) lazyload_cache_labels(labels = "second-chunk", path = paste0(tmpdir, "/cache"), envir = env2) lazyload_cache_dir(path = paste0(tmpdir, "/cache"), envir = env3) # Look at the conents of each of these environments ls(envir = kenv) ls(envir = env1) ls(envir = env2) ls(envir = env3) # The regression models are only fitted once an should be the same in all the # environments where they exist, as should the variables x_is_e and x_is_pi all.equal(kenv$mpg_by_wt_hp, env1$mpg_by_wt_hp) all.equal(env1$mpg_by_wt_hp, env3$mpg_by_wt_hp) all.equal(kenv$mpg_by_wt_hp_am, env2$mpg_by_wt_hp_am) all.equal(env2$mpg_by_wt_hp_am, env3$mpg_by_wt_hp_am) # The value of x, however, should be different in the differnet # environments. For kenv, env2, and env3 the value should be exp(1) as that # was the last assignment value. In env1 the value should be pi as that is # the only relevent assignment. all.equal(kenv$x, exp(1)) all.equal(env1$x, pi) all.equal(env2$x, exp(1)) all.equal(env3$x, exp(1)) # cleanup setwd(oldwd) unlink(tmpdir, recursive = TRUE)
# this example is based on \url{https://stackoverflow.com/a/41439691/1104685} # create a temp directory for a and place a .Rmd file within tmpdir <- normalizePath(paste0(tempdir(), "/llcache_eg"), mustWork = FALSE) tmprmd <- tempfile(pattern = "report", tmpdir = tmpdir, fileext = "Rmd") dir.create(tmpdir) oldwd <- getwd() setwd(tmpdir) # build and example .Rmd file # note that the variable x is created in the first chunck and then over # written in the second chunk cat("---", "title: \"A Report\"", "output: html_document", "---", "", "```{r first-chunk, cache = TRUE}", "mpg_by_wt_hp <- lm(mpg ~ wt + hp, data = mtcars)", "x_is_pi <- pi", "x <- pi", "```", "", "```{r second-chunk, cache = TRUE}", "mpg_by_wt_hp_am <- lm(mpg ~ wt + hp + am, data = mtcars)", "x_is_e <- exp(1)", "x <- exp(1)", "```", sep = "\n", file = tmprmd) # knit the file. evaluate the chuncks in a new environment so we can compare # the objects after loading the cache. kenv <- new.env() knitr::knit(input = tmprmd, envir = kenv) # The objects defined in the .Rmd file are now in kenv ls(envir = kenv) # view the cache list.files(path = tmpdir, recursive = TRUE) # create three more environment, and load only the first chunk into the # first, and the second chunck into the second, and then load all of the # cache into the third env1 <- new.env() env2 <- new.env() env3 <- new.env() lazyload_cache_labels(labels = "first-chunk", path = paste0(tmpdir, "/cache"), envir = env1) lazyload_cache_labels(labels = "second-chunk", path = paste0(tmpdir, "/cache"), envir = env2) lazyload_cache_dir(path = paste0(tmpdir, "/cache"), envir = env3) # Look at the conents of each of these environments ls(envir = kenv) ls(envir = env1) ls(envir = env2) ls(envir = env3) # The regression models are only fitted once an should be the same in all the # environments where they exist, as should the variables x_is_e and x_is_pi all.equal(kenv$mpg_by_wt_hp, env1$mpg_by_wt_hp) all.equal(env1$mpg_by_wt_hp, env3$mpg_by_wt_hp) all.equal(kenv$mpg_by_wt_hp_am, env2$mpg_by_wt_hp_am) all.equal(env2$mpg_by_wt_hp_am, env3$mpg_by_wt_hp_am) # The value of x, however, should be different in the differnet # environments. For kenv, env2, and env3 the value should be exp(1) as that # was the last assignment value. In env1 the value should be pi as that is # the only relevent assignment. all.equal(kenv$x, exp(1)) all.equal(env1$x, pi) all.equal(env2$x, exp(1)) all.equal(env3$x, exp(1)) # cleanup setwd(oldwd) unlink(tmpdir, recursive = TRUE)
Aliases for ls
providing additional details.
ll( pos = 1, pattern, order_by = "size", decreasing = order_by %in% c("size", "rows", "columns") )
ll( pos = 1, pattern, order_by = "size", decreasing = order_by %in% c("size", "rows", "columns") )
pos |
specifies the environment as a position in the search list |
pattern |
an optional regular expression. Only names matching
|
order_by |
a character, order the results by “object”, “size” (default), “class”, “rows”, or “columns”. |
decreasing |
logical, defaults to |
a data.frame with columns
object: name of the object
class: class, or mode if class is not present, of the object
size: approximate size, in bytes, of the object in memory
rows: number of rows for data.frames or matrices, or the number of elements for a list like structure
columns: number of columns for data.frames or matrices
The basis for this work came from a Stack Overflow posting: https://stackoverflow.com/q/1358003/1104685
# View your current workspace ## Not run: ls() ll() ## End(Not run) # View another environment e <- new.env() ll(e) e$fit <- lm(mpg ~ wt, mtcars) e$fit2 <- lm(mpg ~ wt + am + vs, data = mtcars) e$x <- rnorm(1e5) e$y <- runif(1e4) e$z <- with(e, x * y) e$w <- sum(e$z) ls(e) ll(e)
# View your current workspace ## Not run: ls() ll() ## End(Not run) # View another environment e <- new.env() ll(e) e$fit <- lm(mpg ~ wt, mtcars) e$fit2 <- lm(mpg ~ wt + am + vs, data = mtcars) e$x <- rnorm(1e5) e$y <- runif(1e4) e$z <- with(e, x * y) e$w <- sum(e$z) ls(e) ll(e)
transform x
either via the logit, or inverse logit.
logit(x) invlogit(x)
logit(x) invlogit(x)
x |
a numeric vector |
The logit and inverse logit functions are part of R via the logistic distribution functions in the stats package. Quoting from the documentation for the logistic distribution
"qlogis(p)
is the same as the logit
function, logit(p) =
log(p/1-p)
, and plogis(x)
has consequently been called the 'inverse
logit'."
See the examples for benchmarking these functions. The logit
and
invlogit
functions are faster than the qlogis
and plogis
functions.
library(rbenchmark) # compare logit to qlogis p <- runif(1e5) identical(logit(p), qlogis(p)) ## Not run: rbenchmark::benchmark(logit(p), qlogis(p)) ## End(Not run) # compare invlogit to plogis x <- runif(1e5, -1000, 1000) identical(invlogit(x), plogis(x)) ## Not run: rbenchmark::benchmark(invlogit(x), plogis(x)) ## End(Not run)
library(rbenchmark) # compare logit to qlogis p <- runif(1e5) identical(logit(p), qlogis(p)) ## Not run: rbenchmark::benchmark(logit(p), qlogis(p)) ## End(Not run) # compare invlogit to plogis x <- runif(1e5, -1000, 1000) identical(invlogit(x), plogis(x)) ## Not run: rbenchmark::benchmark(invlogit(x), plogis(x)) ## End(Not run)
A function for calculating and formatting means and confidence interval.
mean_ci( x, na_rm = FALSE, alpha = getOption("qwraps2_alpha", 0.05), qdist = stats::qnorm, qdist.args = list(), ... ) ## S3 method for class 'qwraps2_mean_ci' print(x, ...)
mean_ci( x, na_rm = FALSE, alpha = getOption("qwraps2_alpha", 0.05), qdist = stats::qnorm, qdist.args = list(), ... ) ## S3 method for class 'qwraps2_mean_ci' print(x, ...)
x |
a numeric vector |
na_rm |
if true, omit NA values |
alpha |
defaults to |
qdist |
defaults to |
qdist.args |
list of arguments passed to |
... |
arguments passed to |
Given a numeric vector, mean_ci
will return a vector with the mean,
LCL, and UCL. Using frmtci
will be helpful for reporting the results
in print.
a vector with the mean, lower confidence limit (LCL), and the upper confidence limit (UCL).
# using the standard normal for the CI mean_ci(mtcars$mpg) # print it nicely qwraps2::frmtci(mean_ci(mtcars$mpg)) qwraps2::frmtci(mean_ci(mtcars$mpg), show_level = TRUE) qwraps2::frmtci(mean_ci(mtcars$mpg, alpha = 0.01), show_level = TRUE) # Compare to the ci that comes form t.test t.test(mtcars$mpg) t.test(mtcars$mpg)$conf.int mean_ci(mtcars$mpg, qdist = stats::qt, qdist.args = list(df = 31))
# using the standard normal for the CI mean_ci(mtcars$mpg) # print it nicely qwraps2::frmtci(mean_ci(mtcars$mpg)) qwraps2::frmtci(mean_ci(mtcars$mpg), show_level = TRUE) qwraps2::frmtci(mean_ci(mtcars$mpg, alpha = 0.01), show_level = TRUE) # Compare to the ci that comes form t.test t.test(mtcars$mpg) t.test(mtcars$mpg)$conf.int mean_ci(mtcars$mpg, qdist = stats::qt, qdist.args = list(df = 31))
A function for calculating and formatting means and standard deviations.
mean_sd( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_n = "ifNA", denote_sd = "pm", markup = getOption("qwraps2_markup", "latex"), ... )
mean_sd( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_n = "ifNA", denote_sd = "pm", markup = getOption("qwraps2_markup", "latex"), ... )
x |
a numeric vector |
digits |
digits to the right of the decimal point to return in the percentage estimate. |
na_rm |
if true, omit NA values |
show_n |
defaults to "ifNA". Other options are "always" or "never". |
denote_sd |
a character string set to either "pm" or "paren" for reporting 'mean
|
markup |
character string with value "latex" or "markdown" |
... |
pass through |
Given a numeric vector, mean_sd
will return a character string with
the mean and standard deviation. Formatting of the output will be extended in
future versions.
a character vector of the formatted values
set.seed(42) x <- rnorm(1000, 3, 4) mean(x) sd(x) mean_sd(x) mean_sd(x, show_n = "always") mean_sd(x, show_n = "always", denote_sd = "paren") x[187] <- NA mean_sd(x, na_rm = TRUE)
set.seed(42) x <- rnorm(1000, 3, 4) mean(x) sd(x) mean_sd(x) mean_sd(x, show_n = "always") mean_sd(x, show_n = "always", denote_sd = "paren") x[187] <- NA mean_sd(x, na_rm = TRUE)
A function for calculating and formatting means and standard deviations.
mean_se( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_n = "ifNA", denote_sd = "pm", markup = getOption("qwraps2_markup", "latex"), ... )
mean_se( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_n = "ifNA", denote_sd = "pm", markup = getOption("qwraps2_markup", "latex"), ... )
x |
a numeric vector |
digits |
digits to the right of the decimal point to return in the percentage estimate. |
na_rm |
if true, omit NA values |
show_n |
defaults to "ifNA". Other options are "always" or "never". |
denote_sd |
a character string set to either "pm" or "paren" for reporting 'mean
|
markup |
latex or markdown |
... |
pass through |
Given a numeric vector, mean_se
will return a character string with
the mean and standard error of the mean. Formatting of the output will be
extended in future versions.
a character vector of the formatted values
set.seed(42) x <- rnorm(1000, 3, 4) mean(x) sd(x) / sqrt(length(x)) # standard error mean_se(x) mean_se(x, show_n = "always") mean_se(x, show_n = "always", denote_sd = "paren") x[187] <- NA mean_se(x, na_rm = TRUE)
set.seed(42) x <- rnorm(1000, 3, 4) mean(x) sd(x) / sqrt(length(x)) # standard error mean_se(x) mean_se(x, show_n = "always") mean_se(x, show_n = "always", denote_sd = "paren") x[187] <- NA mean_se(x, na_rm = TRUE)
A function for calculating and formatting the median and inner quartile range of a data vector.
median_iqr( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_n = "ifNA", markup = getOption("qwraps2_markup", "latex"), ... )
median_iqr( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_n = "ifNA", markup = getOption("qwraps2_markup", "latex"), ... )
x |
a numeric vector |
digits |
digits to the right of the decimal point to return. |
na_rm |
if true, omit NA values |
show_n |
defaults to "ifNA". Other options are "always" or "never". |
markup |
latex or markdown |
... |
pass through |
Given a numeric vector, median_iqr
will return a character string with
the median and IQR. Formatting of the output will be extended in
future versions.
a character vector of the formatted values
set.seed(42) x <- rnorm(1000, 3, 4) median(x) quantile(x, probs = c(1, 3)/4) median_iqr(x) median_iqr(x, show_n = "always") x[187] <- NA # median_iqr(x) ## Will error median_iqr(x, na_rm = TRUE)
set.seed(42) x <- rnorm(1000, 3, 4) median(x) quantile(x, probs = c(1, 3)/4) median_iqr(x) median_iqr(x, show_n = "always") x[187] <- NA # median_iqr(x) ## Will error median_iqr(x, na_rm = TRUE)
An extended version of mtcars
data set.
mtcars2
mtcars2
a data.frame with 32 rows and 19 columns
[, 1] | make | Manufacturer name | parted out from rownames(mtcars) |
[, 2] | model | parted out from rownames(mtcars) |
|
[, 3] | mpg | miles per (US) gallon | identical to mtcars$mpg |
[, 4] | disp | Displacement (cu.in.) | identical to mtcars$disp |
[, 5] | hp | Gross horsepower | identical to mtcars$hp |
[, 6] | drat | Rear axle ratio | identical to mtcars$drat |
[, 7] | wt | weight (1000 lbs) | identical to mtcars$wt |
[, 8] | qsec | 1/4 mile time | identical to mtcars$qsec |
[, 9] | cyl | number of cylinders | identical to mtcars$cyl |
[, 10] | cyl_character | ||
[, 11] | cyl_factor | ||
[, 12] | vs | Engine (0 = V-shaped, 1 = straight) | identical to mtcars$vs |
[, 13] | engine | ||
[, 14] | am | Transmission (0 = automatic, 1 = manual) | identical to mtcars$am |
[, 15] | transmission | ||
[, 16] | gear | Number of forward gears | identical to mtcars$gear |
[, 17] | gear_factor | ||
[, 18] | carb | Number of carburetors | identical to mtcars$carb |
[, 19] | test_date | fictitious testing date | |
vignette("qwraps2-data-sets", package = "qwraps2")
for
details on the construction of the data set.
A function for calculating and formatting counts and percentages.
n_perc( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_denom = "ifNA", show_symbol = TRUE, markup = getOption("qwraps2_markup", "latex"), ... ) perc_n( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_denom = "ifNA", show_symbol = FALSE, markup = getOption("qwraps2_markup", "latex"), ... ) n_perc0( x, digits = 0, na_rm = FALSE, show_denom = "never", show_symbol = FALSE, markup = getOption("qwraps2_markup", "latex"), ... )
n_perc( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_denom = "ifNA", show_symbol = TRUE, markup = getOption("qwraps2_markup", "latex"), ... ) perc_n( x, digits = getOption("qwraps2_frmt_digits", 2), na_rm = FALSE, show_denom = "ifNA", show_symbol = FALSE, markup = getOption("qwraps2_markup", "latex"), ... ) n_perc0( x, digits = 0, na_rm = FALSE, show_denom = "never", show_symbol = FALSE, markup = getOption("qwraps2_markup", "latex"), ... )
x |
a 0:1 or boolean vector |
digits |
digits to the right of the decimal point to return in the percentage estimate. |
na_rm |
if true, omit NA values |
show_denom |
defaults to "ifNA". Other options are "always" or "never". |
show_symbol |
if TRUE (default) the percent symbol is shown, else it is suppressed. |
markup |
latex or markdown |
... |
pass through |
Default behavior will return the count of successes and the percentage as "N
(pp
can be controlled by setting na.rm = TRUE
. In this case, the number
of non-missing values will be reported by default. Omission of the
non-missing values can be controlled by setting show_denom = "never"
.
The function n_perc0 uses a set of default arguments which may be advantageous for use in building tables.
a character vector of the formatted values
n_perc(c(0, 1,1, 1, 0, 0), show_denom = "always") n_perc(c(0, 1,1, 1, 0, 0, NA), na_rm = TRUE) n_perc(mtcars$cyl == 6) set.seed(42) x <- rbinom(4269, 1, 0.314) n_perc(x) n_perc(x, show_denom = "always") n_perc(x, show_symbol = FALSE) # n_perc0 examples n_perc0(c(0, 1,1, 1, 0, 0)) n_perc0(mtcars$cyl == 6)
n_perc(c(0, 1,1, 1, 0, 0), show_denom = "always") n_perc(c(0, 1,1, 1, 0, 0, NA), na_rm = TRUE) n_perc(mtcars$cyl == 6) set.seed(42) x <- rbinom(4269, 1, 0.314) n_perc(x) n_perc(x, show_denom = "always") n_perc(x, show_symbol = FALSE) # n_perc0 examples n_perc0(c(0, 1,1, 1, 0, 0)) n_perc0(mtcars$cyl == 6)
Peak expiratory flow rate data
pefr
pefr
a data frame with four columns
[, 1] | subject | id number |
[, 2] | measurement | first or second |
[, 3] | meter | “Wright peak flow meter” or “Mini Write peak flow meter” |
[, 4] | pefr | peak expiratory flow rate (liters / min) |
Peak expiratory flow rate (pefr) data is used for examples within the qwraps2 package. The data has been transcribed from Bland (1986).
“The sample comprised colleagues and family of J.M.B. chosen to give a wide range of PEFR but in no way representative of any defined population. Two measurements were made with a Wright peak flow meter and two with a mini Wright meter, in random order. All measurements were taken by J.M.B., using the same two instruments. (These data were collected to demonstrate the statistical method and provide no evidence on the comparability of these two instruments.) We did not repeat suspect readings and took a single reading as our measurement of PEFR. Only the first measurement by each method is used to illustrate the comparison of methods, the second measurements being used in the study of repeatability.”
Bland, J. Martin, and Douglas G Altman. "Statistical methods for assessing agreement between two methods of clinical measurement." The lancet 327, no. 8476 (1986): 307-310.
vignette('qwraps2-data-sets', package = 'qwraps2')
for
details on the construction of the data set.
Check if a package is available on the local machine and optionally verify a version.
pkg_check(pkgs, versions, stop = FALSE)
pkg_check(pkgs, versions, stop = FALSE)
pkgs |
a character vector of package names to check for |
versions |
an optional character vector, of the same length of
|
stop |
if |
When writing a script that will be shared it is very likely that the multiple
authors/users will need to have a certain set of packages available to load.
The pkg_check
function will verify that the packages are available to
load, this includes an optional version test, and attach the package to the
search list if requested.
Testing for package versions will is done as packageVersion(x) >=
version
. If you need a specific version of a package you should explicitly
use packageVersion(x) == version
in your script. In general,
pkg_check
is a handy tool in interactive sessions. For a package you
should have package version documentation in the DESCRIPTION file.
For a script a base R solution of
stopifnot(packageVersion("pkg") >= "x.y.z")
# verify that the packages qwraps2, and ggplot2 are available (this should be # TRUE if you have qwraps2 installed since ggplot2 is imported by qwraps2) pkg_check(c("qwraps2", "ggplot2")) # show that the return is FALSE if a package is not available pkg_check(c("qwraps2", "ggplot2", "NOT a PCKG")) # verify the version for just ggplot2 pkg_check(c("qwraps2", "ggplot2"), c(NA, "2.2.0")) # verify the version for qwraps2 (this is expected to fail as we are looking for # version 42.3.14 which is far too advanced for the actual package development. pkg_check(c("qwraps2", "ggplot2"), c("42.3.14", "2.2.0")) ## Not run: # You can have the function throw an error is any of the checks fail pkg_check(c("qwraps2", "ggplot2"), c("42.3.14", "2.2.0"), stop = TRUE) ## End(Not run) ## Not run: # If you have missing packages that can be installed from CRAN you may find # the following helpful. If this code, with the needed edits, were placed at # the top of a script, then if a package is missing then the current version # from a target repository will be installed. Use this set up with # discretion, others may not want the automatic install of packages. pkgs <- pkg_check("<packages to install>") if (!pkgs) { install.packages(attr(pkgs, "checks")[!attr(pkgs, "checks")$available][["package"]]) } ## End(Not run)
# verify that the packages qwraps2, and ggplot2 are available (this should be # TRUE if you have qwraps2 installed since ggplot2 is imported by qwraps2) pkg_check(c("qwraps2", "ggplot2")) # show that the return is FALSE if a package is not available pkg_check(c("qwraps2", "ggplot2", "NOT a PCKG")) # verify the version for just ggplot2 pkg_check(c("qwraps2", "ggplot2"), c(NA, "2.2.0")) # verify the version for qwraps2 (this is expected to fail as we are looking for # version 42.3.14 which is far too advanced for the actual package development. pkg_check(c("qwraps2", "ggplot2"), c("42.3.14", "2.2.0")) ## Not run: # You can have the function throw an error is any of the checks fail pkg_check(c("qwraps2", "ggplot2"), c("42.3.14", "2.2.0"), stop = TRUE) ## End(Not run) ## Not run: # If you have missing packages that can be installed from CRAN you may find # the following helpful. If this code, with the needed edits, were placed at # the top of a script, then if a package is missing then the current version # from a target repository will be installed. Use this set up with # discretion, others may not want the automatic install of packages. pkgs <- pkg_check("<packages to install>") if (!pkgs) { install.packages(attr(pkgs, "checks")[!attr(pkgs, "checks")$available][["package"]]) } ## End(Not run)
Create a simple table via kable
with row
groups and rownames similar to those of latex
from the
Hmisc package or htmlTable
from the htmlTable
package.
qable( x, rtitle = "", rgroup = numeric(0), rnames = rownames(x), cnames = colnames(x), markup = getOption("qwraps2_markup", "latex"), kable_args = list(), ... )
qable( x, rtitle = "", rgroup = numeric(0), rnames = rownames(x), cnames = colnames(x), markup = getOption("qwraps2_markup", "latex"), kable_args = list(), ... )
x |
|
rtitle |
a row grouping title. See Details. |
rgroup |
a named numeric vector with the name of the row group and the
number of rows within the group. |
rnames |
a character vector of the row names |
cnames |
column names |
markup |
the markup language to use expected to be either "markdown" or "latex" |
kable_args |
a list of named arguments to send to
|
... |
pass through |
rtitle
can be used to add a title to the column constructed by the
rgroup
and rnames
. The basic layout of a table generated by
qable
is:
rtitle | cnames[1] | cnames[2] |
rgroup[1] | ||
rnames[1] | x[1, 1] | x[1, 2] |
rnames[2] | x[2, 1] | x[2, 2] |
rnames[3] | x[3, 1] | x[3, 2] |
rgroup[2] | ||
rnames[4] | x[4, 1] | x[4, 1] |
rnames[5] | x[5, 1] | x[5, 1] |
Passing arguments to link[knitr]{kable}
is done via the list
kable_args
. This is an improvement in 0.6.0 to address arguments with
different use between qable and kable but the same name, notably
format
. Within the print method for qwraps2_qable
objects,
some default arguments for knitr::kable are created.
Defaults if the named element of kable_args
is missing:
kable_args$format
will be "latex" if markup = "latex"
and will
be "pipe"
if markup = "markdown"
.
kable_args$escape = !(markup = "latex")
kable_args$row.names
defaults to FALSE
kable_args$col.names
defaults to colnames(x)
qable
returns a qwraps2_qable
object that is just a character matrix with
some additional attributes and the print method returns, invisibly, the
object passed to print.
summary_table
, for an example of build a data summary table.
For more detail on arguments you can pass via kable_args
look at the
non-exported functions form the knitr package knitr:::kable_latex
,
knitr:::kable_markdown
, or others.
data(mtcars) x <- qable(mtcars) x qable(mtcars, markup = "markdown") # by make make <- sub("^(\\w+)\\s?(.*)$", "\\1", rownames(mtcars)) make <- c(table(make)) # A LaTeX table with a vertical bar between each column qable(mtcars[sort(rownames(mtcars)), ], rgroup = make) # A LaTeX table with no vertical bars between columns qable(mtcars[sort(rownames(mtcars)), ], rgroup = make, kable_args = list(vline = "")) # a markdown table qable(mtcars[sort(rownames(mtcars)), ], rgroup = make, markup = "markdown") # define your own column names qable(mtcars[sort(rownames(mtcars)), ], rgroup = make, cnames = toupper(colnames(mtcars)), markup = "markdown") # define your own column names and add a title qable(mtcars[sort(rownames(mtcars)), ], rtitle = "Make & Model", rgroup = make, cnames = toupper(colnames(mtcars)), markup = "markdown")
data(mtcars) x <- qable(mtcars) x qable(mtcars, markup = "markdown") # by make make <- sub("^(\\w+)\\s?(.*)$", "\\1", rownames(mtcars)) make <- c(table(make)) # A LaTeX table with a vertical bar between each column qable(mtcars[sort(rownames(mtcars)), ], rgroup = make) # A LaTeX table with no vertical bars between columns qable(mtcars[sort(rownames(mtcars)), ], rgroup = make, kable_args = list(vline = "")) # a markdown table qable(mtcars[sort(rownames(mtcars)), ], rgroup = make, markup = "markdown") # define your own column names qable(mtcars[sort(rownames(mtcars)), ], rgroup = make, cnames = toupper(colnames(mtcars)), markup = "markdown") # define your own column names and add a title qable(mtcars[sort(rownames(mtcars)), ], rtitle = "Make & Model", rgroup = make, cnames = toupper(colnames(mtcars)), markup = "markdown")
ggplot2 style autocorrelation plot
qacf( x, conf_level = 1 - getOption("qwraps2_alpha", 0.05), show_sig = FALSE, ... )
qacf( x, conf_level = 1 - getOption("qwraps2_alpha", 0.05), show_sig = FALSE, ... )
x |
object |
conf_level |
confidence level for determining ‘significant’ correlations |
show_sig |
logical, highlight significant correlations |
... |
Other arguments passed to |
qacf calls acf
to generate a data set which is
then plotted via ggplot2.
More details and examples for graphics within qwraps2 are in the vignette(“qwraps2-graphics”, package = “qwraps2”)
a ggplot.
acf
.
# Generate a random data set set.seed(42) n <- 250 x1 <- x2 <- x3 <- x4 <- vector('numeric', length = n) x1[1] <- runif(1) x2[1] <- runif(1) x3[1] <- runif(1) x4[1] <- runif(1) # white noise Z_1 <- rnorm(n, 0, 1) Z_2 <- rnorm(n, 0, 2) Z_3 <- rnorm(n, 0, 5) for(i in 2:n) { x1[i] <- x1[i-1] + Z_1[i] - Z_1[i-1] + x4[i-1] - x2[i-1] x2[i] <- x2[i-1] - 2 * Z_2[i] + Z_2[i-1] - x4[i-1] x3[i] <- x3[i-1] + x2[i-1] + 0.2 * Z_3[i] + Z_3[i-1] x4[i] <- x4[i-1] + runif(1, 0.5, 1.5) * x4[i-1] } testdf <- data.frame(x1, x2, x3, x4) # qacf plot for one variable qacf(testdf$x1) qacf(testdf$x1, show_sig = TRUE) # more than one variable qacf(testdf) qacf(testdf, show_sig = TRUE)
# Generate a random data set set.seed(42) n <- 250 x1 <- x2 <- x3 <- x4 <- vector('numeric', length = n) x1[1] <- runif(1) x2[1] <- runif(1) x3[1] <- runif(1) x4[1] <- runif(1) # white noise Z_1 <- rnorm(n, 0, 1) Z_2 <- rnorm(n, 0, 2) Z_3 <- rnorm(n, 0, 5) for(i in 2:n) { x1[i] <- x1[i-1] + Z_1[i] - Z_1[i-1] + x4[i-1] - x2[i-1] x2[i] <- x2[i-1] - 2 * Z_2[i] + Z_2[i-1] - x4[i-1] x3[i] <- x3[i-1] + x2[i-1] + 0.2 * Z_3[i] + Z_3[i-1] x4[i] <- x4[i-1] + runif(1, 0.5, 1.5) * x4[i-1] } testdf <- data.frame(x1, x2, x3, x4) # qacf plot for one variable qacf(testdf$x1) qacf(testdf$x1, show_sig = TRUE) # more than one variable qacf(testdf) qacf(testdf, show_sig = TRUE)
Construct and plot a Bland Altman plot in ggplot2.
qblandaltman(x, alpha = getOption("qwraps2_alpha", 0.05), generate_data = TRUE) qblandaltman_build_data_frame(x, alpha = getOption("qwraps2_alpha", 0.05))
qblandaltman(x, alpha = getOption("qwraps2_alpha", 0.05), generate_data = TRUE) qblandaltman_build_data_frame(x, alpha = getOption("qwraps2_alpha", 0.05))
x |
a |
alpha |
(Defaults to 0.05) place (1 - alpha)*100 place on the plot. |
generate_data |
logical, defaults to TRUE. If TRUE, then the call to
|
Providing a data.frame
with two columns, the function returns a ggplot
version of a Bland Altman plot with the specified confidence intervals.
Two ways to call the plotting function. If you submit a data.frame
qblandaltman
then the data needed to produce the Bland Altman plot is
automatically generated by a call to qblandaltman_build_data_frame
.
Alternatively, you may call qblandaltman_build_data_frame
directly and
then call qblandaltman
. This might be helpful if you are putting
multiple Bland Altman plots together into one ggplot object. See Examples.
More details and examples for graphics within qwraps2 are in the vignette(“qwraps2-graphics”, package = “qwraps2”)
a ggplot. Minimal aesthetics have been used so that the user may modify the graphic as desired with ease.
Altman, Douglas G., and J. Martin Bland. "Measurement in medicine: the analysis of method comparison studies." The statistician (1983): 307-317.
Bland, J. Martin, and Douglas G Altman. "Statistical methods for assessing agreement between two methods of clinical measurement." The lancet 327, no. 8476 (1986): 307-310.
data(pefr) pefr_m1 <- cbind("Large" = pefr[pefr$measurement == 1 & pefr$meter == "Wright peak flow meter", "pefr"], "Mini" = pefr[pefr$measurement == 1 & pefr$meter == "Mini Wright peak flow meter", "pefr"]) # The Bland Altman plot plots the average value on the x-axis and the # difference in the measurements on the y-axis: qblandaltman(pefr_m1) + ggplot2::xlim(0, 800) + ggplot2::ylim(-100, 100) + ggplot2::xlab("Average of two meters") + ggplot2::ylab("Difference in the measurements")
data(pefr) pefr_m1 <- cbind("Large" = pefr[pefr$measurement == 1 & pefr$meter == "Wright peak flow meter", "pefr"], "Mini" = pefr[pefr$measurement == 1 & pefr$meter == "Mini Wright peak flow meter", "pefr"]) # The Bland Altman plot plots the average value on the x-axis and the # difference in the measurements on the y-axis: qblandaltman(pefr_m1) + ggplot2::xlim(0, 800) + ggplot2::ylim(-100, 100) + ggplot2::xlab("Average of two meters") + ggplot2::ylab("Difference in the measurements")
A ggplot2 version of a Kaplan-Meier Plot
qkmplot(x, conf_int = FALSE, ...) qkmplot_bulid_data_frame(x) ## S3 method for class 'survfit' qkmplot_bulid_data_frame(x) qrmst(x, tau = Inf) ## S3 method for class 'survfit' qrmst(x, tau = Inf) ## S3 method for class 'qkmplot_data' qrmst(x, tau = Inf)
qkmplot(x, conf_int = FALSE, ...) qkmplot_bulid_data_frame(x) ## S3 method for class 'survfit' qkmplot_bulid_data_frame(x) qrmst(x, tau = Inf) ## S3 method for class 'survfit' qrmst(x, tau = Inf) ## S3 method for class 'qkmplot_data' qrmst(x, tau = Inf)
x |
object |
conf_int |
logical if TRUE show the CI |
... |
Other arguments passed to survival::plot.survfit |
tau |
upper bound on time for restricted mean survival time estimate |
Functions to build, explicitly or implicitly, data.frames and then creating a ggplot2 KM plot.
More details and examples for graphics within qwraps2 are in the vignette(“qwraps2-graphics”, package = “qwraps2”)
a ggplot.
require(survival) leukemia.surv <- survival::survfit(survival::Surv(time, status) ~ x, data = survival::aml) qkmplot(leukemia.surv, conf_int = TRUE) qkmplot_bulid_data_frame(leukemia.surv) qrmst(leukemia.surv) # NaN for rmst.se in Nonmaintained strata as last observation is an event qrmst(leukemia.surv, 44) # pbc examples pbc_fit <- survival::survfit( formula = survival::Surv(time, status > 0) ~ trt , data = pbc , subset = !is.na(trt) ) qkmplot(pbc_fit) qkmplot(pbc_fit, conf_int = TRUE) qrmst(pbc_fit) qrmst(pbc_fit)
require(survival) leukemia.surv <- survival::survfit(survival::Surv(time, status) ~ x, data = survival::aml) qkmplot(leukemia.surv, conf_int = TRUE) qkmplot_bulid_data_frame(leukemia.surv) qrmst(leukemia.surv) # NaN for rmst.se in Nonmaintained strata as last observation is an event qrmst(leukemia.surv, 44) # pbc examples pbc_fit <- survival::survfit( formula = survival::Surv(time, status > 0) ~ trt , data = pbc , subset = !is.na(trt) ) qkmplot(pbc_fit) qkmplot(pbc_fit, conf_int = TRUE) qrmst(pbc_fit) qrmst(pbc_fit)
Construction of ROC and PRC data and plots.
qroc(x, ...) ## Default S3 method: qroc(x, ...) ## S3 method for class 'qwraps2_confusion_matrix' qroc(x, ...) ## S3 method for class 'glm' qroc(x, ...) qprc(x, ...) ## Default S3 method: qprc(x, ...) ## S3 method for class 'qwraps2_confusion_matrix' qprc(x, ...) ## S3 method for class 'glm' qprc(x, ...)
qroc(x, ...) ## Default S3 method: qroc(x, ...) ## S3 method for class 'qwraps2_confusion_matrix' qroc(x, ...) ## S3 method for class 'glm' qroc(x, ...) qprc(x, ...) ## Default S3 method: qprc(x, ...) ## S3 method for class 'qwraps2_confusion_matrix' qprc(x, ...) ## S3 method for class 'glm' qprc(x, ...)
x |
an object |
... |
pass through |
The area under the curve (AUC) is determined by a trapezoid approximation for both the AUROC and AUPRC.
More details and examples for graphics within qwraps2 are in the vignette(“qwraps2-graphics”, package = “qwraps2”)
a ggplot. Minimal aesthetics have been used so that the user may modify the graphic as desired with ease.
######################################################### # Example 1 df <- data.frame( truth = c(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) , pred = c(1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0) ) cm <- confusion_matrix(df$truth, df$pred) qroc(cm) qprc(cm) ######################################################### # Getting a ROC or PRC plot from a glm object: mod <- glm( formula = spam ~ word_freq_our + word_freq_over + capital_run_length_total , data = spambase , family = binomial() ) qroc(mod) qprc(mod) ######################################################### # View the vignette for more examples ## Not run: vignette("qwraps2-graphics") ## End(Not run)
######################################################### # Example 1 df <- data.frame( truth = c(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) , pred = c(1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0) ) cm <- confusion_matrix(df$truth, df$pred) qroc(cm) qprc(cm) ######################################################### # Getting a ROC or PRC plot from a glm object: mod <- glm( formula = spam ~ word_freq_our + word_freq_over + capital_run_length_total , data = spambase , family = binomial() ) qroc(mod) qprc(mod) ######################################################### # View the vignette for more examples ## Not run: vignette("qwraps2-graphics") ## End(Not run)
Functions for controlling the look of package names in markdown created vignettes and easy curating of URLs for the packages.
Rpkg(pkg) CRANpkg(pkg) Githubpkg(pkg, username) Gitlabpkg(pkg, username)
Rpkg(pkg) CRANpkg(pkg) Githubpkg(pkg, username) Gitlabpkg(pkg, username)
pkg |
The name of the package, will work as a quoted or raw name. |
username |
username for Github.com or Gitlab.com |
Rpkg(qwraps2) Rpkg("qwraps2") CRANpkg(qwraps2) CRANpkg("qwraps2") Githubpkg(qwraps2, "dewittpe") Githubpkg("qwraps2", dewittpe) Gitlabpkg(qwraps2, "dewittpe") Gitlabpkg("qwraps2", dewittpe)
Rpkg(qwraps2) Rpkg("qwraps2") CRANpkg(qwraps2) CRANpkg("qwraps2") Githubpkg(qwraps2, "dewittpe") Githubpkg("qwraps2", dewittpe) Gitlabpkg(qwraps2, "dewittpe") Gitlabpkg("qwraps2", dewittpe)
Function for testing for unique values between two vectors, specifically, which values are in vector1, and not in vector2, which values are not in vector1 and in vector2, which values are in both vector1 and vector2.
set_diff(x, y)
set_diff(x, y)
x , y
|
vectors (of the same mode) |
a qwraps2_set_diff object, a list of set comparisons
all_values
= union(x, y)
x_only
= setdiff(x, y)
y_only
= setdiff(y, x)
both
= intersect(x, y)
equal
= setequal(x, y)
# example with two sets which as a union are the upper and lower case vowels. set_a <- c("A", "a", "E", "I", "i", "O", "o", "U", "u", "E", "I") set_b <- c("A", "a", "E", "e", "i", "o", "U", "u", "u", "a", "e") set_diff(set_a, set_b) str(set_diff(set_a, set_b)) set_diff(set_b, set_a) # example set_a <- 1:90 set_b <- set_a[-c(23, 48)] set_diff(set_a, set_b) set_diff(set_b, set_a) # example set_a <- c("A", "A", "B") set_b <- c("B", "A") set_diff(set_a, set_b)
# example with two sets which as a union are the upper and lower case vowels. set_a <- c("A", "a", "E", "I", "i", "O", "o", "U", "u", "E", "I") set_b <- c("A", "a", "E", "e", "i", "o", "U", "u", "u", "a", "e") set_diff(set_a, set_b) str(set_diff(set_a, set_b)) set_diff(set_b, set_a) # example set_a <- 1:90 set_b <- set_a[-c(23, 48)] set_diff(set_a, set_b) set_diff(set_b, set_a) # example set_a <- c("A", "A", "B") set_b <- c("B", "A") set_diff(set_a, set_b)
Classifying Email as Spam or Non-Spam
spambase
spambase
a data.frame with 4601 rows, 58 columns; 57 features and 0/1 indicator for spam
Used under CC BY 4.0 license.
Hopkins,Mark, Reeber,Erik, Forman,George, and Suermondt,Jaap. (1999). Spambase. UCI Machine Learning Repository. https://doi.org/10.24432/C53G6X.
vignette("qwraps2-data-sets", package = "qwraps2")
for
details on the construction of the data set.
A tool to help identify the opening and closing of comments in a spin document. This function is designed to help the user resolve the error "comments must be put in pairs of start and end delimiters."
spin_comments(hair, comment = c("^[# ]*/[*]", "^.*[*]/ *$"), text = NULL, ...)
spin_comments(hair, comment = c("^[# ]*/[*]", "^.*[*]/ *$"), text = NULL, ...)
hair |
Path to the R script. The script must be encoded in UTF-8 if it contains multi-byte characters. |
comment |
A pair of regular expressions for the start and end delimiters
of comments; the lines between a start and an end delimiter will be
ignored. By default, the delimiters are |
text |
A character vector of code, as an alternative way to provide the
R source. If |
... |
additional arguments (not currently used.) |
spin_comments(hair = system.file("examples/spinner1.R", package = "qwraps2"))
spin_comments(hair = system.file("examples/spinner1.R", package = "qwraps2"))
Provides stair step values for ribbon plots (Copied this from the https://github.com/hrbrmstr/ggalt version 0.6.0, which is not yet on CRAN. Some minor modifications to the file have been made).
stat_stepribbon( mapping = NULL, data = NULL, geom = "ribbon", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, direction = "hv", ... )
stat_stepribbon( mapping = NULL, data = NULL, geom = "ribbon", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, direction = "hv", ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
geom |
which geom to use; defaults to |
position |
A position adjustment to use on the data for this layer. This
can be used in various ways, including to prevent overplotting and
improving the display. The
|
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
direction |
|
... |
Other arguments passed on to
|
https://groups.google.com/forum/?fromgroups=#!topic/ggplot2/9cFWHaH1CPs
x <- 1:10 df <- data.frame(x=x, y=x+10, ymin=x+7, ymax=x+12) # horizontal-vertical steps (default) gg <- ggplot2::ggplot(df, ggplot2::aes(x, y)) gg <- gg + ggplot2::geom_ribbon(ggplot2::aes(ymin=ymin, ymax=ymax), stat="stepribbon", fill="#b2b2b2", direction="hv") gg <- gg + ggplot2::geom_step(color="#2b2b2b") gg # vertical-horizontal steps (default) gg <- ggplot2::ggplot(df, ggplot2::aes(x, y)) gg <- gg + ggplot2::geom_ribbon(ggplot2::aes(ymin=ymin, ymax=ymax), stat="stepribbon", fill="#b2b2b2", direction="vh") gg <- gg + ggplot2::geom_step(color="#2b2b2b") gg # The same plot calling stat_stepribbon directly gg <- ggplot2::ggplot(df, ggplot2::aes(x, y)) gg <- gg + stat_stepribbon(mapping = ggplot2::aes(ymin=ymin, ymax=ymax), fill="#b2b2b2", direction="vh") gg <- gg + ggplot2::geom_step(color="#2b2b2b") gg
x <- 1:10 df <- data.frame(x=x, y=x+10, ymin=x+7, ymax=x+12) # horizontal-vertical steps (default) gg <- ggplot2::ggplot(df, ggplot2::aes(x, y)) gg <- gg + ggplot2::geom_ribbon(ggplot2::aes(ymin=ymin, ymax=ymax), stat="stepribbon", fill="#b2b2b2", direction="hv") gg <- gg + ggplot2::geom_step(color="#2b2b2b") gg # vertical-horizontal steps (default) gg <- ggplot2::ggplot(df, ggplot2::aes(x, y)) gg <- gg + ggplot2::geom_ribbon(ggplot2::aes(ymin=ymin, ymax=ymax), stat="stepribbon", fill="#b2b2b2", direction="vh") gg <- gg + ggplot2::geom_step(color="#2b2b2b") gg # The same plot calling stat_stepribbon directly gg <- ggplot2::ggplot(df, ggplot2::aes(x, y)) gg <- gg + stat_stepribbon(mapping = ggplot2::aes(ymin=ymin, ymax=ymax), fill="#b2b2b2", direction="vh") gg <- gg + ggplot2::geom_step(color="#2b2b2b") gg
Provides stair step values for ribbon plots (Copied this from the https://github.com/hrbrmstr/ggalt version 0.6.0, which is not yet on CRAN. Some minor modifications to the file have been made).
https://groups.google.com/forum/?fromgroups=#!topic/ggplot2/9cFWHaH1CPs
Tools useful for building data summary tables.
summary_table(x, summaries = qsummary(x), by = NULL, qable_args = list(), ...) qsummary(x, numeric_summaries, n_perc_args, env = parent.frame())
summary_table(x, summaries = qsummary(x), by = NULL, qable_args = list(), ...) qsummary(x, numeric_summaries, n_perc_args, env = parent.frame())
x |
a |
summaries |
a list of lists of formulea for summarizing the data set. See Details and examples. |
by |
a character vector of variable names to generate the summary by, that is one column for each unique values of the variables specified. |
qable_args |
additional values passed to |
... |
pass through |
numeric_summaries |
a list of functions to use for summarizing numeric
variables. The functions need to be provided as character strings with the
single argument defined by the |
n_perc_args |
a list of arguments to pass to
|
env |
environment to assign to the resulting formulae |
summary_table
can be used to generate good looking, simple tables in
LaTeX or markdown. Functions like xtables::print.xtable and Hmisc::latex
provide many more tools for formatting tables. The purpose of
summary_table
is to generate good looking tables quickly within
workflow for summarizing a data set.
Creating a list-of-lists of summary functions to apply to a data set will
allow the exploration of the whole data set and grouped data sets. In the
example provided on this page we see a set of summary measures for the
mtcars
data set and the construction of a table for
the whole data set and for a grouped data set.
The list-of-lists should be thought of as follows: the outer list defines row groups, the inner lists define the rows within each row group.
More detailed use of these functions can be found the "summary-statistics" vignette.
The print
method for the qwraps2_summary_table
objects is just
a simple wrapper for qable
.
a qwraps2_summary_table
object.
qsummary
for generating the summaries,
qable
for marking up qwraps2_data_summary
objects.
The vignette("summary-statistics", package = "qwraps2")
for detailed
use of these functions and caveats.
# A list-of-lists for the summaries arg. This object is of the basic form: # # list("row group A" = # list("row 1A" = ~ <summary function>, # "row 2A" = ~ <summary function>), # "row group B" = # list("row 1B" = ~ <summary function>, # "row 2B" = ~ <summary function>, # "row 3B" = ~ <summary function>)) our_summaries <- list("Miles Per Gallon" = list("min" = ~ min(mpg), "mean" = ~ mean(mpg), "mean ± sd" = ~ qwraps2::mean_sd(mpg), "max" = ~ max(mpg)), "Weight" = list("median" = ~ median(wt)), "Cylinders" = list("4 cyl: n (%)" = ~ qwraps2::n_perc0(cyl == 4), "6 cyl: n (%)" = ~ qwraps2::n_perc0(cyl == 6), "8 cyl: n (%)" = ~ qwraps2::n_perc0(cyl == 8))) # Going to use markdown for the markup language in this example, the original # option will be reset at the end of the example. orig_opt <- options()$qwraps2_markup options(qwraps2_markup = "markdown") # The summary table for the whole mtcars data set whole_table <- summary_table(mtcars, our_summaries) whole_table # The summary table for mtcars grouped by am (automatic or manual transmission) # This will generate one column for each level of mtcars$am grouped_by_table <- summary_table(mtcars, our_summaries, by = "am") grouped_by_table # an equivalent call if you are using the tidyverse: summary_table(dplyr::group_by(mtcars, am), our_summaries) # To build a table with a column for the whole data set and each of the am # levels cbind(whole_table, grouped_by_table) # Adding a caption for a LaTeX table print(whole_table, caption = "Hello world", markup = "latex") # A **warning** about grouped_df objects. # If you use dplyr::group_by or # dplyr::rowwise to manipulate a data set and fail to use dplyr::ungroup you # might find a table that takes a long time to create and does not summarize the # data as expected. For example, let's build a data set with twenty subjects # and injury severity scores for head and face injuries. We'll clean the data # by finding the max ISS score for each subject and then reporting summary # statistics there of. set.seed(42) dat <- data.frame(id = letters[1:20], head_iss = sample(1:6, 20, replace = TRUE, prob = 10 * (6:1)), face_iss = sample(1:6, 20, replace = TRUE, prob = 10 * (6:1))) dat <- dplyr::group_by(dat, id) dat <- dplyr::mutate(dat, iss = max(head_iss, face_iss)) iss_summary <- list("Head ISS" = list("min" = ~ min(head_iss), "median" = ~ median(head_iss), "max" = ~ max(head_iss)), "Face ISS" = list("min" = ~ min(face_iss), "median" = ~ median(face_iss), "max" = ~ max(face_iss)), "Max ISS" = list("min" = ~ min(iss), "median" = ~ median(iss), "max" = ~ max(iss))) # Want: a table with one column for all subjects with nine rows divided up into # three row groups. However, the following call will create a table with 20 # columns, one for each subject because dat is a grouped_df summary_table(dat, iss_summary) # Ungroup the data.frame to get the correct output summary_table(dplyr::ungroup(dat), iss_summary) ################################################################################ # The Default call will work with non-syntactically valid names and will # generate a table with statistics defined by the qsummary call. summary_table(mtcars, by = "cyl") # Another example from the diamonds data data("diamonds", package = "ggplot2") diamonds["The Price"] <- diamonds$price diamonds["A Logical"] <- sample(c(TRUE, FALSE), size = nrow(diamonds), replace = TRUE) # the next two lines are equivalent. summary_table(diamonds) summary_table(diamonds, qsummary(diamonds)) summary_table(diamonds, by = "cut") summary_table(diamonds, summaries = list("My Summary of Price" = list("min price" = ~ min(price), "IQR" = ~ stats::IQR(price))), by = "cut") ################################################################################ # Data sets with missing values temp <- mtcars temp$cyl[5] <- NA temp$am[c(1, 5, 10)] <- NA temp$am <- factor(temp$am, levels = 0:1, labels = c("Automatic", "Manual")) temp$vs <- as.logical(temp$vs) temp$vs[c(2, 6)] <- NA qsummary(temp[, c("cyl", "am", "vs")]) summary_table(temp[, c("cyl", "am", "vs")]) ################################################################################ # Group by Multiple Variables temp <- mtcars temp$trans <- factor(temp$am, 0:1, c("Manual", "Auto")) temp$engine <- factor(temp$vs, 0:1, c("V-Shaped", "Straight")) summary_table(temp, our_summaries, by = c("trans", "engine")) ################################################################################ # binding tables together. The original design and expected use of # summary_table did not require a rbind, as all rows are defined in the # summaries argument. That said, here are examples of using cbind and rbind to # build several different tables. our_summary1 <- list("Miles Per Gallon" = list("min" = ~ min(mpg), "max" = ~ max(mpg), "mean (sd)" = ~ qwraps2::mean_sd(mpg)), "Displacement" = list("min" = ~ min(disp), "max" = ~ max(disp), "mean (sd)" = ~ qwraps2::mean_sd(disp))) our_summary2 <- list( "Weight (1000 lbs)" = list("min" = ~ min(wt), "max" = ~ max(wt), "mean (sd)" = ~ qwraps2::mean_sd(wt)), "Forward Gears" = list("Three" = ~ qwraps2::n_perc0(gear == 3), "Four" = ~ qwraps2::n_perc0(gear == 4), "Five" = ~ qwraps2::n_perc0(gear == 5)) ) tab1 <- summary_table(mtcars, our_summary1) tab2 <- summary_table(dplyr::group_by(mtcars, am), our_summary1) tab3 <- summary_table(dplyr::group_by(mtcars, vs), our_summary1) tab4 <- summary_table(mtcars, our_summary2) tab5 <- summary_table(dplyr::group_by(mtcars, am), our_summary2) tab6 <- summary_table(dplyr::group_by(mtcars, vs), our_summary2) cbind(tab1, tab2, tab3) cbind(tab4, tab5, tab6) # row bind is possible, but it is recommended to extend the summary instead. rbind(tab1, tab4) summary_table(mtcars, summaries = c(our_summary1, our_summary2)) ## Not run: cbind(tab1, tab4) # error because rows are not the same rbind(tab1, tab2) # error because columns are not the same ## End(Not run) ################################################################################ # reset the original markup option that was used before this example was # evaluated. options(qwraps2_markup = orig_opt) # Detailed examples in the vignette # vignette("summary-statistics", package = "qwraps2")
# A list-of-lists for the summaries arg. This object is of the basic form: # # list("row group A" = # list("row 1A" = ~ <summary function>, # "row 2A" = ~ <summary function>), # "row group B" = # list("row 1B" = ~ <summary function>, # "row 2B" = ~ <summary function>, # "row 3B" = ~ <summary function>)) our_summaries <- list("Miles Per Gallon" = list("min" = ~ min(mpg), "mean" = ~ mean(mpg), "mean ± sd" = ~ qwraps2::mean_sd(mpg), "max" = ~ max(mpg)), "Weight" = list("median" = ~ median(wt)), "Cylinders" = list("4 cyl: n (%)" = ~ qwraps2::n_perc0(cyl == 4), "6 cyl: n (%)" = ~ qwraps2::n_perc0(cyl == 6), "8 cyl: n (%)" = ~ qwraps2::n_perc0(cyl == 8))) # Going to use markdown for the markup language in this example, the original # option will be reset at the end of the example. orig_opt <- options()$qwraps2_markup options(qwraps2_markup = "markdown") # The summary table for the whole mtcars data set whole_table <- summary_table(mtcars, our_summaries) whole_table # The summary table for mtcars grouped by am (automatic or manual transmission) # This will generate one column for each level of mtcars$am grouped_by_table <- summary_table(mtcars, our_summaries, by = "am") grouped_by_table # an equivalent call if you are using the tidyverse: summary_table(dplyr::group_by(mtcars, am), our_summaries) # To build a table with a column for the whole data set and each of the am # levels cbind(whole_table, grouped_by_table) # Adding a caption for a LaTeX table print(whole_table, caption = "Hello world", markup = "latex") # A **warning** about grouped_df objects. # If you use dplyr::group_by or # dplyr::rowwise to manipulate a data set and fail to use dplyr::ungroup you # might find a table that takes a long time to create and does not summarize the # data as expected. For example, let's build a data set with twenty subjects # and injury severity scores for head and face injuries. We'll clean the data # by finding the max ISS score for each subject and then reporting summary # statistics there of. set.seed(42) dat <- data.frame(id = letters[1:20], head_iss = sample(1:6, 20, replace = TRUE, prob = 10 * (6:1)), face_iss = sample(1:6, 20, replace = TRUE, prob = 10 * (6:1))) dat <- dplyr::group_by(dat, id) dat <- dplyr::mutate(dat, iss = max(head_iss, face_iss)) iss_summary <- list("Head ISS" = list("min" = ~ min(head_iss), "median" = ~ median(head_iss), "max" = ~ max(head_iss)), "Face ISS" = list("min" = ~ min(face_iss), "median" = ~ median(face_iss), "max" = ~ max(face_iss)), "Max ISS" = list("min" = ~ min(iss), "median" = ~ median(iss), "max" = ~ max(iss))) # Want: a table with one column for all subjects with nine rows divided up into # three row groups. However, the following call will create a table with 20 # columns, one for each subject because dat is a grouped_df summary_table(dat, iss_summary) # Ungroup the data.frame to get the correct output summary_table(dplyr::ungroup(dat), iss_summary) ################################################################################ # The Default call will work with non-syntactically valid names and will # generate a table with statistics defined by the qsummary call. summary_table(mtcars, by = "cyl") # Another example from the diamonds data data("diamonds", package = "ggplot2") diamonds["The Price"] <- diamonds$price diamonds["A Logical"] <- sample(c(TRUE, FALSE), size = nrow(diamonds), replace = TRUE) # the next two lines are equivalent. summary_table(diamonds) summary_table(diamonds, qsummary(diamonds)) summary_table(diamonds, by = "cut") summary_table(diamonds, summaries = list("My Summary of Price" = list("min price" = ~ min(price), "IQR" = ~ stats::IQR(price))), by = "cut") ################################################################################ # Data sets with missing values temp <- mtcars temp$cyl[5] <- NA temp$am[c(1, 5, 10)] <- NA temp$am <- factor(temp$am, levels = 0:1, labels = c("Automatic", "Manual")) temp$vs <- as.logical(temp$vs) temp$vs[c(2, 6)] <- NA qsummary(temp[, c("cyl", "am", "vs")]) summary_table(temp[, c("cyl", "am", "vs")]) ################################################################################ # Group by Multiple Variables temp <- mtcars temp$trans <- factor(temp$am, 0:1, c("Manual", "Auto")) temp$engine <- factor(temp$vs, 0:1, c("V-Shaped", "Straight")) summary_table(temp, our_summaries, by = c("trans", "engine")) ################################################################################ # binding tables together. The original design and expected use of # summary_table did not require a rbind, as all rows are defined in the # summaries argument. That said, here are examples of using cbind and rbind to # build several different tables. our_summary1 <- list("Miles Per Gallon" = list("min" = ~ min(mpg), "max" = ~ max(mpg), "mean (sd)" = ~ qwraps2::mean_sd(mpg)), "Displacement" = list("min" = ~ min(disp), "max" = ~ max(disp), "mean (sd)" = ~ qwraps2::mean_sd(disp))) our_summary2 <- list( "Weight (1000 lbs)" = list("min" = ~ min(wt), "max" = ~ max(wt), "mean (sd)" = ~ qwraps2::mean_sd(wt)), "Forward Gears" = list("Three" = ~ qwraps2::n_perc0(gear == 3), "Four" = ~ qwraps2::n_perc0(gear == 4), "Five" = ~ qwraps2::n_perc0(gear == 5)) ) tab1 <- summary_table(mtcars, our_summary1) tab2 <- summary_table(dplyr::group_by(mtcars, am), our_summary1) tab3 <- summary_table(dplyr::group_by(mtcars, vs), our_summary1) tab4 <- summary_table(mtcars, our_summary2) tab5 <- summary_table(dplyr::group_by(mtcars, am), our_summary2) tab6 <- summary_table(dplyr::group_by(mtcars, vs), our_summary2) cbind(tab1, tab2, tab3) cbind(tab4, tab5, tab6) # row bind is possible, but it is recommended to extend the summary instead. rbind(tab1, tab4) summary_table(mtcars, summaries = c(our_summary1, our_summary2)) ## Not run: cbind(tab1, tab4) # error because rows are not the same rbind(tab1, tab2) # error because columns are not the same ## End(Not run) ################################################################################ # reset the original markup option that was used before this example was # evaluated. options(qwraps2_markup = orig_opt) # Detailed examples in the vignette # vignette("summary-statistics", package = "qwraps2")
Compute the integral of y with respect to x via trapezoid rule.
traprule(x, y)
traprule(x, y)
x , y
|
numeric vectors of equal length |
a numeric value, the estimated integral
xvec <- seq(-2 * pi, 3 * pi, length = 560) foo <- function(x) { sin(x) + x * cos(x) + 12 } yvec <- foo(xvec) plot(xvec, yvec, type = "l") integrate(f = foo, lower = -2 * pi, upper = 3 * pi) traprule(xvec, yvec)
xvec <- seq(-2 * pi, 3 * pi, length = 560) foo <- function(x) { sin(x) + x * cos(x) + 12 } yvec <- foo(xvec) plot(xvec, yvec, type = "l") integrate(f = foo, lower = -2 * pi, upper = 3 * pi) traprule(xvec, yvec)